quinta-feira, 28 de maio de 2009

Mutação

A variação genética se origina de mutações aleatórias que ocorrem no genoma dos organismos. Mutações são mudanças na sequência dos nucleotídeos do genoma de uma célula, sendo causadas por radiação, vírus, transposons e substâncias químicas mutagênicas, assim como erros que ocorrem durante a meiose ou replicação do DNA. Esses agentes produzem diversos tipos de mudança nas sequências de DNA, que podem ser sem efeito, podem alterar o produto de um gene, ou alterar o quanto um gene é produzido. Estudos com a mosca-das-frutas, Drosophila melanogaster, apontam que cerca de 70% das mutações são deletérias (prejudiciais), sendo as restantes neutras (sem efeito) ou com pequeno efeito benéfico. Devido aos efeitos danosos das mutações sobre o funcionamento das células, os organismos desenvolveram ao longo do tempo evolutivo mecanismos responsáveis pelo reparo do DNA para remover mutações. Assim, a taxa ótima de mutação é resultado do balanço entre as demandas conflitantes de reduzir danos a curto prazo, como risco de câncer, e aumentar os benefícios a longo prazo de mutações vantajosas.

Grandes porções de DNA também podem ser duplicadas, fenômeno que funciona como fonte de material para a evolução de novos genes, sendo estimado que dezenas a centenas de genes são duplicados nos genomas de animais a cada milhão de anos[29]. A grande maioria dos genes pertence a famílias de genes homólogos, que partilham um ancestral comum, de forma semelhante ao que ocorre com linhagens de espécies. Novos genes podem ser produzidos tanto por duplicação e mutação de um gene ancestral como por recombinação de partes de genes diferentes para formar novas combinações com funções distintas. Por exemplo, quatro dos genes utilizados no olho humano para a produção de estruturas responsáveis pela percepção de luz, derivam de um ancestral comum, sendo que três desses genes atuam na visão em cores e um na visão noturna. Uma vantagem na duplicação de genes (ou mesmo de genomas inteiros por poliploidia) é que sobreposição ou redundância funcional em vários genes pode permitir que alelos que seriam deletérios sem essa redundância sejam mantidos na população, aumentando assim a diversidade genética.

Mudanças em número de cromossomos também podem envolver a quebra e rearranjo de DNA entre cromossomos. Por exemplo, no gênero Homo, dois cromossomos se fundiram, formando o cromossomo 2 humano. Essa fusão não ocorreu na linhagem dos outros grandes primatas (orangotango, chimpanzé, e gorila), e eles mantêm esses cromossomos separados. O papel mais importante desse tipo de rearranjo dos cromossomos na evolução pode ser o de acelerar a divergência de uma população em novas espécies, por meio de uma redução na chance de cruzamento entre as populações, preservando as diferenças genéticas entre elas.

Sequências de DNA que têm a capacidade de se mover pelo genoma, como transposons, constituem uma fração significativa do material genético de plantas e animais, e podem ter sido importantes na evolução de genomas. Por exemplo, mais de um milhão de cópias de um padrão denominado sequência Alu estão presentes no genoma humano, e tem sido demonstrado que essas sequências podem desempenhar um papel da regulação da expressão gênica. Outro efeito dessas sequências de DNA é que, ao se moverem dentro do genoma, elas podem mudar ou deletar genes existentes, gerando assim diversidade genética.

Variação

Como o fenótipo de um indivíduo resulta da interação de seu genótipo com o ambiente, a variação nos fenótipos de uma população reflete, em certa medida, a variação nos genótipos dos indivíduos. A síntese evolutiva moderna define evolução como a mudança nas frequências gênicas ao longo do tempo, ou seja, a flutuação na frequência de um ou mais alelos, se tornando mais ou menos prevalecente relativamente a outras formas do mesmo gene. Forças evolutivas atuam direcionando essa mudança de diferentes formas. A variação em determinado locus desaparece quando algum alelo se fixa na população, ou seja, quando um mesmo alelo passa a estar presente em todos os indivíduos.

A origem de toda a variação genética são mutações no material genético. Essa variação pode ser reorganizada por meio da reprodução sexuada, e distribuída entre populações por meio de migração. A variação também pode vir de trocas de genes entre espécies diferentes, como por exemplo na transferência horizontal de genes em bactérias, e hibridização, principalmente em plantas. Apesar da constante introdução de variação por meio desses processos, a maior parte do genoma de uma espécie é idêntica em todos os indivíduos. No entanto, até mesmo relativamente poucas mudanças no genótipo podem levar a mudanças dramáticas no fenótipo: chimpanzés e humanos possuem apenas cerca de 5% de diferença em seu genoma.

Hereditariedade

A herança em organismos ocorre por meio de caracteres discretos – características particulares de um organismo. Em seres humanos, por exemplo, a cor dos olhos é uma característica herdada dos pais. As características herdadas são controladas por genes e o conjunto de todos os genes no genoma de um organismo é o seu genótipo.

O conjunto das características observáveis que compõem a estrutura e o comportamento de um organismo é denominado o seu fenótipo. Estas características surgem da interação do genótipo com o ambiente. Desta forma, não são todos os aspectos de um organismo que são herdados. O bronzeamento da pele resulta da interação entre o genótipo de uma pessoa e a luz do sol; assim, um bronzeado não é hereditário. No entanto, as pessoas têm diferentes respostas à radiação solar, resultantes de diferenças no seu genótipo; um exemplo extremo são os indivíduos com a característica hereditária do albinismo, que não se bronzeiam e são altamente sensíveis a queimaduras de sol, devido à inexistência do pigmento melanina na pele.

Os genes são regiões nas moléculas de ácido desoxirribonucleico (DNA) que contêm informação genética. O DNA é uma molécula comprida com quatro tipos de bases ligadas umas às outras. Genes diferentes apresentam uma sequência diferente de bases; é a sequência destas bases que codifica a informação genética. Dentro das células, as longas cadeias de DNA estão associadas com proteínas formando estruturas chamadas cromossomas. Um local específico dentro de um cromossoma é conhecido como locus. Uma vez que normalmente existem duas cópias do mesmo cromossoma no genoma, os locus correspondentes em cada um destes (cuja sequência de DNA pode ser igual ou diferente) são denominados alelos. As sequências de DNA podem mudar através de mutações, produzindo novos alelos. Se uma mutação ocorrer dentro de um gene, o novo alelo pode afectar a característica que o gene controla, alterando o fenótipo de um organismo. No entanto, enquanto que esta simples correspondência entre alelo e uma característica funciona em alguns casos, a maioria das características são mais complexas e são controladas por múltiplos genes que interagem uns com os outros.

Teoria a Evolução

Evolução, no ramo da biologia, é a mudança das características hereditárias de uma população de uma geração para outra. Este processo faz com que as populações de organismos mudem ao longo do tempo. Características hereditárias são a expressão génica de genes que são passados aos descendentes durante a reprodução. Mutações em genes podem produzir características novas ou alterar características que já existiam, resultando no aparecimento de diferenças hereditárias entre organismos. Estas novas características também podem surgir da transferência de genes entre populações, como resultado de migração, ou entre espécies, resultante de transferência horizontal de genes. A evolução ocorre quando estas diferenças hereditárias tornam-se mais comuns ou raras numa população, quer de maneira não-aleatória através de selecção natural ou aleatoriamente através de deriva genética.

A selecção natural é um processo pelo qual características hereditárias que contribuem para a sobrevivência e reprodução se tornam mais comuns numa população, enquanto que características prejudiciais tornam-se mais raras. Isto ocorre porque indivíduos com características vantajosas tem mais sucesso na reprodução, de modo que mais indivíduos na próxima geração herdam estas características. Ao longo de muitas gerações, adaptações ocorrem através de uma combinação de mudanças sucessivas, pequenas e aleatórias nas características, e selecção natural dos variantes mais adequadas ao seu ambiente. Em contraste, a deriva genética produz mudanças aleatórias na frequência das características numa população. A deriva genética surge do papel que o acaso joga na probabilidade de um determinado indivíduo sobreviver e reproduzir-se.

Uma espécie pode ser definida como um grupo de organismos que se podem reproduzir uns com os outros e produzir descendência fértil. No entanto, quando uma espécie está separada em várias populações que não se podem cruzar, mecanismos como mutações, deriva genética e a selecção de características novas, provocam a acumulação de diferenças ao longo de gerações e a emergência de novas espécies. As semelhanças entre organismos sugere que todas as espécies conhecidas descenderam de um ancestral comum (ou pool genético ancestral) através deste processo de divergência gradual.

Estudos do registro fóssil e da diversidade dos seres vivos mostravam já aos cientistas, a partir de meados do século dezanove, que as espécies mudam ao longo do tempo. Contudo, o mecanismo que levou a estas mudanças permaneceu pouco claro até à publicação do livro de Charles Darwin, A Origem das Espécies, detalhando a teoria de evolução por selecção natural. O trabalho de Darwin levou rapidamente à aceitação da evolução pela comunidade científica. Na década de 1930, a selecção natural Darwiniana, foi combinada com a hereditariedade mendeliana para formar a síntese evolutiva moderna, em que foi feita a ligação entre as unidades de evolução (genes) e o mecanismo de evolução (selecção natural). Esta teoria com um grande poder preditivo e explanatório tornou-se o pilar central da biologia moderna, oferecendo uma explicação unificadora para toda a diversidade da vida na Terra.